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Dopamine D2 and adenosine A2A receptors interact to regulate aspects of motor and motivational function,
and it has been suggested that adenosine A2A antagonists could be useful for the treatment of parkinsonism
and depression. The present experiments were performed to characterize the effects of Lu AA47070, which is
a phosphonooxymethylene prodrug of a potent and selective adenosine A2A receptor antagonist, for its ability
to reverse the motor and motivational effects of D2 antagonism. In the first group of studies, Lu AA47070
(3.75–30 mg/kg IP) was assessed for its ability to reverse the effects of the D2 receptor antagonist pimozide
(1.0 mg/kg IP) using several measures of motor impairment, including catalepsy, locomotion, and tremulous
jawmovements, which is a rodent model of parkinsonian tremor. Lu AA47070 produced a significant reversal
of the effects of pimozide on all three measures of parkinsonian motor impairment. In addition, Lu AA47070
was able to reverse the effects of a low dose of the D2 antagonist haloperidol on a concurrent lever pressing/
chow feeding task that is used as a measure of effort-related choice behavior. The ability of Lu AA47070 to
reverse the effects of D2 receptor blockade suggests that this compound could have potential utility as a
treatment for parkinsonism, and for some of the motivational symptoms of depression.

© 2011 Published by Elsevier Inc.
1. Introduction

Within the last few years, increasing evidence has demonstrated
an important role for adenosine in modulating the functional circuitry
of the basal ganglia (Mally and Stone, 1996, 1998; Ferré et al., 1997,
2001, 2004; Svenningsson et al., 1999; Stromberg et al., 2000; Hauber
et al., 2001; Morelli and Pinna, 2002; Bara-Jimenez et al., 2003; Simola
et al., 2006; Salamone et al., 2008b). Several subtypes of adenosine re-
ceptors are involved in striatal function, and anatomical studies have
shown that the adenosine A2A receptor subtype has a very high degree
of expressionwithin both the neostriatum and the nucleus accumbens
(Svenningsson et al., 1999; Wang et al., 2000; Chen et al., 2001). In
striatal areas, adenosine A2A receptors are present in very high densi-
ties on both ventral and dorsal striatopallidal neurons, which also tend
to co-express DA D2 receptors and enkephalin (Schiffman et al., 1991;
Fink et al., 1992; Rosin et al., 1998; Svenningsson et al., 1999; Hillion et
roscience, Dept. of Psychology,

mone).
Taub Institute for Research on
iversity College of Physicians

sevier Inc.
al., 2002; Fuxe et al., 2007; Mingote et al., 2008; Vontell et al., 2010).
Adenosine A2A andDAD2 receptors are thought to formheterodimers,
and it has been suggested that they also converge onto the same
cAMP-related signal transduction pathways (Ferré et al., 1997;
Svenningsson et al., 1999; Ferré et al., 2008). This combination of an-
atomical and neurochemical findings has led to the suggestion that
adenosine A2A receptor antagonists could be useful as antiparkinso-
nian drugs (Ferré et al., 1997; Svenningsson et al., 1999; Morelli and
Pinna, 2002; Salamone, 2010a).

Several studies with animal models have demonstrated that antag-
onism of adenosine A2A receptors can produce motor effects that are
consistent with antiparkinsonian actions (Aoyama et al., 2000;
Ferré et al., 2001; Morelli and Pinna, 2002; Schwarzschild et al., 2002;
Correa et al., 2004; Simola et al., 2004; Pinna et al., 2005; Ishiwari et
al., 2007; Tronci et al., 2007; LeWitt et al., 2008; Salamone et al.,
2008a,b; Betz et al., 2009; Collins et al., 2010a,b, 2011). Adenosine
A2A antagonists have been shown to reverse the locomotor suppres-
sion, catalepsy, and muscle rigidity that are induced by interference
with striatal DA transmission (Shiozaki et al., 1999; Hauber et al.,
2001; Wardas et al., 2001; Correa et al., 2004; Ishiwari et al., 2007;
Salamone et al., 2008a,b; Trevitt et al., 2009a). The adenosine A2A an-
tagonists MSX-3 and KF 17837 significantly reversed the locomotor
suppression induced by DA D1 and D2 receptor antagonism (Correa
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et al., 2004; Ishiwari et al., 2007; Collins et al., 2010a), and adenosine
A2A receptor knockout mice showed reduced levels of haloperidol-
induced catalepsy compared to wild type mice (Chen et al., 2001).
Furthermore, adenosine A2A antagonists have been studied for their
antitremor effects in rodent models. Tremulous jaw movements
induced by DA antagonism, DA depletion and cholinomimetic drugs
are a well characterized animal model of drug-induced tremor
(Salamone et al., 1990, 1998, 2001, 2005a, 2008a,b; Salamone and
Baskin, 1996; Cousins et al., 1998; Rodriguez Diaz et al., 2001; Cenci
et al., 2002; Simola et al., 2004, 2006; Ishiwari et al., 2005; Miwa,
2007; Miwa et al., 2008, 2009; Vanover et al., 2008; Betz et al.,
2009; Collins et al., 2010b, 2011). These oral movements in rats
have many of the characteristics of parkinsonian tremor (Cousins et
al., 1997; Salamone et al., 1998, 2005a,b, 2008a,b; Collins et al.,
2010b, 2011), and several studies have shown that adenosine A2A an-
tagonists can substantially attenuate drug-induced tremulous jaw
movements (Correa et al., 2004; Simola et al., 2004, 2006; Tronci et
al., 2007; Salamone et al., 2008a; Collins et al., 2010b, 2011). Data
from human clinical studies also have supported the hypothesis that
adenosine A2A antagonists could be useful as antiparkinsonian agents
(Bara-Jimenez et al., 2003; Hauser et al., 2003, 2008; Jenner, 2005;
LeWitt et al., 2008; Stacy et al., 2008; Gillespie et al., 2009; Pinna,
2009; Factor et al., 2010; Fernandez et al., 2010; Knebel et al., 2010;
Mizuno et al., 2010; Salamone, 2010b).

In addition to studies related to parkinsonian motor dysfunctions,
researchers have begun to characterize the effects of A2A receptor ag-
onists and antagonists on aspects of cognition (Takahashi et al., 2008)
and motivation (O'Neill and Brown, 2006; Font et al., 2008; Mingote
et al., 2008). Behavioral activation and expenditure of effort are
fundamental aspects of motivation (Salamone, 1988, 1992, 2010a;
Salamone and Correa, 2002) and considerable evidence indicates
that nucleus accumbens DA and adenosine interact in regulating
these functions (Salamone and Correa, 2009; Salamone et al., 2005b,
2009a,b, 2010). Studies of effort-related choice behavior typically
allow animals to select between options that vary in terms of the
work requirement of the instrumental actions and the value of the re-
inforcers that can be obtained. Research on effort-related choice has
involved the use of a T-maze barrier task (Salamone et al., 1994;
Cousins et al., 1996; Walton et al., 2002, 2003; Denk et al., 2005;
Floresco and Ghods-Sharifi, 2007; Bardgett et al., 2009; Correa et al.,
2009), or effort discounting procedures (Floresco et al., 2008;
Bardgett et al., 2009). Additional experiments have employed a con-
current fixed ratio 5 (FR5)/chow feeding procedure (Salamone et al.,
1991, 2002, 2003, 2007). With this task, rats can select either lever
pressing on an FR5 schedule for a highly preferred food (i.e., high car-
bohydrate precision pellets) or approaching and consuming a freely
available but less preferred food (rodent chow). Trained rats eat little
of the freely available lab chow, and instead spend most of their time
lever pressing for the preferred food. Low doses of D1 or D2 family
antagonists, or intra-accumbens injections of D1 or D2 antagonists,
suppress food-reinforced lever pressing, but substantially elevate
chow intake (Salamone et al., 1991, 1996, 2002; Cousins et al.,
1994; Koch et al., 2000; Nowend et al., 2001; Sink et al., 2008; Farrar
et al., 2010). Recent evidence indicates that drugs acting on adenosine
A2A receptors also affect behavioral activation and effort-related pro-
cesses. Microinjections of the adenosine A2A agonist CGS 21680 into
the nucleus accumbens produced effects on instrumental behavior
and effort-related choice that resembled those produced by accum-
bens DA depletions or antagonism (Font et al., 2008; Mingote et al.,
2008). Several studies have shown that adenosine A2A antagonists
such as MSX-3 and istradefylline (KW-6002) are capable of reversing
the effort-related effects of the DA D2 antagonists haloperidol and eti-
clopride in rats tested on the concurrent FR5/feeding choice proce-
dure (Farrar et al., 2007, 2010; Salamone et al., 2009a,b; Worden et
al., 2009; Nunes et al., 2010), and on the T-maze barrier choice task
(Mott et al., 2009; Pardo et al., 2010). It has been suggested that the
DA/adenosine interaction that is evident in animal studies of behav-
ioral activation and effort-based choice may also be related to
human clinical symptoms such as anergia, psychomotor retardation,
and fatigue in depression and other disorders (Salamone et al.,
2006, 2007, 2009a,b, 2010; Treadway and Zald, 2011). This hypothe-
sis is consistent with reports indicating that adenosine A2A antago-
nists are effective in animal models of depression (El Yacoubi et al.,
2003; Hodgson et al., 2009; Hanff et al., 2010).

In view of the preclinical and clinical data gathered thus far, the
development and testing of novel adenosine A2A antagonists is
becoming an important research priority. The present studies repre-
sent an assessment of a novel adenosine A2A antagonist prodrug, Lu
AA47070, which is a phosphonooxymethylene prodrug of a potent
and selective adenosine A2A receptor antagonist (4-(3,3-dimethyl-
butyrylamino)-3,5-difluoro-N-thiazol-2-yl-benzamide; Sams et al.,
2011). The parent compound is a competitive antagonist of adenosine
A2A receptors, with a Ki of 5.9 nM, and a relatively high binding selec-
tivity for A2A receptors relative to A1 receptors (69-fold), A2B receptors
(45-fold), and A3 receptors (>1000-fold; Sams et al., 2011). The first
three experiments studied the ability of Lu AA47070 to reverse the ef-
fects of the DA D2 antagonist pimozide on tremulous jawmovements,
locomotor suppression, and catalepsy, under the same conditions
used previously for the assessment of the adenosine A2A antagonists
MSX-3 and istradefylline (Salamone et al., 2008a). These conditions
(i.e., repeated administration of 1.0 mg/kg pimozide) are optimized
for induction of tremulous jaw movements, but also allow for assess-
ment of locomotion and catalepsy. The fourth experiment assessed
the effects of Lu AA47070 on the alterations in effort-related choice be-
havior induced by a low dose of the DA antagonist haloperidol in rats
responding on the concurrent FR5 lever pressing/chow feeding task. It
washypothesized that LuAA47070would reverse the behavioral effects
of D2 receptor antagonism across these different procedures.

2. Materials and methods

2.1. Animals

A total of 106 adult male Sprague Dawley rats (Harlan Sprague
Dawley, Indianapolis, IN) with no prior drug experience were used
in the present experiments. The rats weighed 350–450 g during the
course of the experiment and had ad libitum access to lab chow and
water. They were group-housed in a colony that was maintained at
approximately 23 °C and had a 12-hour light/dark cycle (lights on at
0700 h). These studies were conducted according to University of
Connecticut and NIH guidelines for animal care and use.

2.2. Drug treatment procedures and dose selection

Pimozide and haloperidol were purchased from Sigma Aldrich
Chemical (St. Louis, MO), and were in a 0.3% tartaric acid solution
(final pH=4.0), and the tartaric acid solution also was used as the
vehicle control for the haloperidol injections. Lu AA47070 (phospho-
ric acid mono-{2-[(E/Z)-4-(3,3-dimethyl-butyrylamino)-3,5-difluoro-
benzoylimino]thiazol-3-ylmethyl} ester) is a water soluble pro-
drug of 4-(3,3-dimethyl-butyrylamino)-3,5-difluoro-N-thiazol-2-yl-
benzamide. Lu AA47070 was obtained from H. Lundbeck A/S
(Copenhagen, Denmark) and was dissolved in a 4.0% NaOH solution,
which was also used as the vehicle control. The pH of the Lu AA47070
solution was adjusted by adding 1.0 N NaOH until the drug was
completely in solution (pH=7.4). For the studies of tremulous jaw
movements, locomotion and catalepsy, the subchronic 1.0 mg/kg (IP)
pimozide treatment procedure that was shown to induce tremulous
jawmovements in the present studies was based upon previously pub-
lished experiments showing induction of jaw movements at this dose
(Ishiwari et al., 2005; Betz et al., 2007, 2009; Salamone et al., 2008a;
Collins et al., 2010b). These methods are optimized for the production
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of jaw movement activity, but also allow for the parallel assessment of
locomotion and catalepsy. The procedure of screening animals by asses-
sing them for tremulous jaw movements the day before the drug chal-
lenge day was the same as that used in previous studies (Ishiwari et al.,
2005; Salamone et al., 2008a; Collins et al., 2010b). This was done in
order to ensure a robust jawmovement response on the drug challenge
day. Only a small percentage of animals (i.e., b5%) failed to show a sub-
stantial jaw movement response to pimozide (i.e., b15 tremulous jaw
movements) on day 7. The doses of Lu AA47070 chosen were based
upon extensive pilot work and were comparable to doses of adenosine
A2A antagonists utilized in other tremulous jaw experiments (Simola et
al., 2004; Tronci et al., 2007; Salamone et al., 2008a,b; Betz et al., 2009;
Collins et al., 2010b). For the operant conditioning experiments, the
dose of haloperidol (0.1 mg/kg IP) was selected based upon previous
studies (Salamone et al., 1991, 1996, 2009a,b; Farrar et al., 2007).
Although higher doses of haloperidol can suppress food intake, this
0.1 mg/kg dose did not suppress intake of chow or operant pellets,
and did not alter preference between them (Salamone et al., 1991).

2.3. Behavioral procedures

2.3.1. Tremulous jaw movements
Observations of rats took place in a 30×30×30 cm clear Plexiglas

chamber with a wire mesh floor, which was elevated 42 cm from the
table top. This allowed for the viewing of the animal from several
angles, including underneath. Tremulous jaw movements were
defined as rapid vertical deflections of the lower jaw that resembled
chewing but were not directed at any particular stimulus (Salamone
et al., 1998). Each individual deflection of the jaw was recorded
using a mechanical hand counter by a trained observer, who was
blind to the experimental condition of the rat being observed.
Separate studies with two observers demonstrated an inter-rater
reliability of r=0.97 (pb0.01) using these methods.

2.3.2. Catalepsy
Catalepsy was tested by placing both forelimbs of the rat onto a

stationary horizontal metal bar, raised 12.5 cm above a wooden plat-
form. The rat was then allowed to stabilize itself with its hindpaws
resting on the platform. Latency for the animal to cease having both
forelimbs on the metal bar was timed. Three trials were conducted,
and the latencies for each trial were averaged. A maximum of 2 min
on the catalepsy bar was allowed for each trial. In a previous paper
using these exact methods, 1.0 mg/kg pimozide on day 8 produced
a mean of 22.7±2.4 s of catalepsy, while vehicle injection produced
a mean of 1.7±1.2 s (Salamone et al., 2008a).

2.3.3. Locomotor activity
Locomotor activity was assessed by placing the rat into an

automated activity chamber (28 cm×28 cm×28 cm) enclosed in a
sound-attenuating shell. The floor of the chamber was elevated 6 cm
above the chamber bottom and was composed of two moveable wire-
mesh panels, (25 cm×12 cm), which were further divided into four
quadrants by means of a central metal rod between the two panels. As
the rat entered each quadrant, a slight vertical movement of the mesh
panels closed amicroswitch located outside of the locomotion chamber.
This depression was detected and recorded by a computer program,
written in MedPC, as a single activity count (Med Associates, Inc.,
Georgia, VT). The locomotor activity session was 10-min in length.
These methods of measuring locomotion have been used previously to
assess the effects of DA and adenosine antagonists on locomotion
(Collins et al., 2010a; Salamone et al., 2008a).

2.3.4. Operant concurrent FR5/chow feeding task
Operant behavior sessions were conducted in lever pressing cham-

bers (28×23×23 cm; Med Associates). Rats were initially trained to
lever press on a continuous reinforcement schedule (30-min sessions;
45-mg pellets, Bioserve, Frenchtown, NJ, were used for all operant
behavior tests) and thenwere trained on the FR5 schedule (30-min ses-
sions, 5 days/week) for several additional weeks. Rats were then tested
on the concurrent FR5/chow-feeding procedure. With this task,
weighed amounts of lab chow (Lab Diet, 5P00 Prolab RMH 3000, Purina
Mills, St. Louis, MO; typically 15–20 g, three large pieces) were concur-
rently available on the floor of the chamber during the FR5 sessions. At
the end of the session, rats were immediately removed from the cham-
ber, and food intake was determined by weighing the remaining food
(including spillage). Rats were trained until they attained stable base-
line response rates (i.e., consistent responding over 1200 lever presses
per 30 min), after which drug testing began. For most baseline days,
rats did not receive supplemental feeding; however, over weekends
and after drug tests, rats typically received supplemental chow in the
home cage. On baseline and drug treatment days, rats normally con-
sumed all the operant pellets that were delivered during each session.

2.4. Experiments

2.4.1. Experiment 1: ability of Lu AA47070 to reverse the tremulous jaw
movements induced by subchronic administration of the DA D2
antagonist pimozide

A group of 81 rats (n=11–20/group) was used to assess the
effects of subchronic systemic injections of the DA D2 antagonist
pimozide on tremulous jaw movements. All rats received an injection
of 1.0 mg/kg pimozide IP for 8 consecutive days. On day 7 of the sub-
chronic injections, rats were assessed for the induction of tremulous
jaw movements in a 5 min period. Any rat that showed less than 15
tremulous jaw movements on day 7 was excluded from further test-
ing. On day 8, 3 h and 30 min after the daily pimozide injection, each
animal randomly received an injection of either Lu AA47070 or vehi-
cle control in one of the following doses (vehicle control; 3.75 mg/kg;
7.5 mg/kg; 15 mg/kg; 30 mg/kg Lu AA47070). Twenty minutes later,
animals were placed in the Plexiglas observation chamber and
allowed to habituate for 10 min. Immediately following habituation,
the number of jaw movements in a 5-min observation period was
assessed as described above.

2.4.2. Experiment 2: ability of Lu AA47070 to reverse the catalepsy
induced by subchronic administration of the D2 antagonist pimozide

Immediately following the tremulous jaw movement assessment
carried out in experiment 1, rats were tested for the induction of cat-
alepsy, as described above.

2.4.3. Experiment 3: ability of Lu AA47070 to reverse the locomotor
suppression induced by subchronic administration of the D2
antagonist pimozide

After completion of the catalepsy testing in experiment 2, locomo-
tor activity was assessed in a 10-min session, using the procedure
outlined above.

2.4.4. Experiment 4: effect of Lu AA47070 on haloperidol-induced
changes in effort-related choice behavior

Following the initial training with the concurrent FR5/chow feeding
procedure described above, rats (n=14) were tested after receiving
combined drug treatments. For this experiment, the following treat-
ments were used: tartaric acid vehicle (50 min before testing) plus
saline vehicle IP (30 min before testing), 0.1 mg/kg haloperidol IP
(50 min before testing) plus saline vehicle IP (30 min before testing),
and 0.1 mg/kg haloperidol IP (50 min before testing) plus various
doses of Lu AA47070 injected IP (0.5, 1.5, 5.0 and 15.0 mg/kg; 30 min
before testing). Behavioral measures included number of lever presses
and amount of chow consumed. Treatments were given once per
week, in a randomly varied order. Although 1.0 mg/kg pimozide was
used to induce tremulous jaw movements, 0.1 mg/kg haloperidol was
used for the operant studies because this is a standard drug condition
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in our laboratory that has beenworked out in detail in previous operant
studies with MSX-3 and istradefylline (Farrar et al., 2007; Salamone et
al., 2009a,b).
2.5. Data analyses

Behavioral data for experiments 1–3 were analyzed using a be-
tween groups analysis of variance (ANOVA). For the operant behavior
experiment, data were analyzed by repeated measures ANOVA. A
computerized statistical program (SPSS 10.1 for Windows) was used
to perform all analyses. When there was a significant ANOVA,
planned comparisons using the overall error termwere used to assess
the differences between each dose and the control condition; the
total number of comparisons was restricted to the number of treat-
ments minus one (Keppel, 1991).
3. Results

3.1. Experiments 1–3: ability of Lu AA47070 to reverse the tremulous jaw
movements, catalepsy, and locomotor suppression induced by
subchronic administration of the D2 antagonist pimozide

Fig. 1A shows the effects of systemic injections of Lu AA47070 on
tremulous jaw movements. Co-administration of Lu AA47070 signifi-
cantly reversed the tremulous jaw movements induced by the DA D2
antagonist pimozide (F(4,76)=3.259; pb0.05). Planned comparisons
revealed that the 30.0 mg/kg dose of Lu AA47070 differed significant-
ly from vehicle control (p=0.001). The effects of Lu AA47070 on cat-
alepsy are shown in Fig. 1B. The novel adenosine antagonist prodrug
Lu AA47070 was able to significantly reverse pimozide-induced cata-
lepsy (F(4,76)=4.933; p=0.001). Planned comparisons demonstrat-
ed that all four of the doses of Lu AA47070 (3.75 mg/kg, 7.5 mg/kg,
15.0 mg/kg, and 30.0 mg/kg) were able to significantly reverse
catalepsy when compared to vehicle control. Fig. 1C depicts the
effects of Lu AA47070 administration on DA D2 antagonist-induced
locomotor suppression. Lu AA47070 was able to significantly increase
locomotion in pimozide-treated rats (F(4,76)=10.470; pb0.001).
Planned comparisons showed that the 7.5 mg/kg, 15.0 mg/kg, and
30.0 mg/kg doses of Lu AA47070 all increased locomotion compared
to the pimozide plus vehicle control.
Fig. 1. Effect of Lu AA47070 on pimozide-induced tremulous jaw movements, catalep-
sy, and suppression of locomotion. A. Mean (±SEM) number of individual jaw move-
ments (per 5 min observation period) after injection of tartaric acid vehicle
plus1.0 mg/kg pimozide or pimozide plus various doses of Lu AA47070. B. Mean
(±SEM) catalepsy response (in seconds) after injection of tartaric acid vehicle
plus1.0 mg/kg pimozide or pimozide plus various doses of Lu AA47070. C. Mean
(±SEM) number of locomotor counts after injection of tartaric acid vehicle plus
1.0 mg/kg pimozide or pimozide plus various doses of Lu AA47070. *pb0.05, different
from vehicle plus pimozide.
3.2. Experiment 4: reversal of the effects of DA antagonism on
effort-related choice behavior with co-administration of Lu AA47070

The results of the fourth experiment are shown in Fig. 2. There was
an overall significant effect of drug treatment on lever pressing
(Fig. 2A top; F(5,65)=54.8, pb0.001). Planned comparisons showed
that haloperidol produced a significant reduction in lever pressing com-
pared to vehicle control (pb0.05). In addition, co-administration of Lu
AA47070 with haloperidol produced a significant increase in lever
pressing compared to haloperidol plus vehicle, with the 1.5, 5.0 and
15.0 mg/kg doses of Lu AA47070 producing significant differences rela-
tive to haloperidol plus vehicle (planned comparisons; pb0.05). There
also was an overall significant effect of drug treatment on chow intake
(Fig. 2B bottom; F(5,65)=32.3, pb0.001). Planned comparisons indi-
cated that haloperidol produced a significant increase in chow intake
compared to vehicle control (pb0.05). Planned comparisons revealed
that co-administration of Lu AA47070 with haloperidol produced a sig-
nificant decrease in chow intake relative to haloperidol plus vehicle,
with the 5.0 and 15.0 mg/kg doses of Lu AA47070 being significantly
different from haloperidol plus vehicle (pb0.05). For both lever press-
ing and chow intake, post-hoc analysis with the Tukey test (α=0.05)
indicated that the haloperidol plus 15.0 mg/kg Lu AA47070 condition
did not significantly differ from the vehicle plus vehicle condition.
4. Discussion

The present experiments were conducted to determine if the
novel adenosine A2A antagonist prodrug Lu AA47070 could show a
behavioral profile similar to other adenosine A2A antagonists on
tests related to motor function and effort-based choice behavior.
In the first group of experiments, rats were assessed using a



Fig. 2. The effects of Lu AA47070 on haloperidol-induced changes in performance on
the concurrent lever pressing/chow feeding choice procedure. Rats (n=14) were trea-
ted with tartaric acid vehicle plus saline vehicle (Veh/Veh), 0.1 mg/kg haloperidol plus
vehicle (H/Veh), and 0.1 mg/kg haloperidol plus various doses of haloperidol plus Lu
AA47070 (H/Lu). Top. Mean (±SEM) number of lever presses (FR5 schedule) during
the 30 min session. Bottom. Mean (±SEM) gram quantity of chow intake. #pb0.05,
significantly different from the Veh/Veh control; *pb0.05 significantly different from
haloperidol plus vehicle.
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neurological battery consisting of three measures of motor function
that are thought to be related to parkinsonism: tremulous jaw move-
ments, catalepsy, and locomotion (Salamone et al., 2008a). The same
behavioral procedures were used in the Salamone et al. (2008a)
paper, and in that study, it was shown that subchronic administration
of 1.0 mg/kg of the DA D2 antagonist pimozide induced tremulous jaw
movements and catalepsy, and reduced locomotion, relative to vehicle-
treated rats. In the present study, co-administration of Lu AA47070 re-
versed themotor impairments induced by subchronic administration of
1.0 mg/kg pimozide. All four doses of Lu AA47070 tested (3.75 mg/kg,
7.5 mg/kg, 15.0 mg/kg, and 30.0 mg/kg) were capable of reducing
pimozide-induced catalepsy. Three of the four doses of Lu AA47070
injected (7.5 mg/kg, 15 mg/kg, and 30 mg/kg) stimulated locomotion
in pimozide-treated rats. Furthermore, the highest dose of Lu
AA47070 (30.0 mg/kg) also attenuated the tremulous jaw movements
induced by subchronic pimozide administration. The ability of Lu
AA47070 to reverse parkinsonian motor impairments induced by DA
antagonism is consistentwith the growing body of literature suggesting
that adenosine A2A antagonists are capable of attenuating some of the
motor dysfunctions induced by interference with DA transmission,
such as reduced locomotion (Shiozaki et al., 1999; Aoyama et al.,
2000; Correa et al., 2004; Ishiwari et al., 2007; Collins et al., 2010a), ri-
gidity (Wardas et al., 2001), catalepsy (Hauber, 1998; Hauber et al.,
2001; Kanda et al., 1994; Salamone et al., 2008a), and tremulous jaw
movements (Correa et al., 2004; Tronci et al., 2007; Salamone et al.,
2008a,b; Trevitt et al., 2009b; Collins et al., 2010b, 2011). Moreover,
the present results with Lu AA47070 are consistent with a previous re-
port (Salamone et al., 2008a) demonstrating that the A2A antagonists
MSX-3 and istradefylline attenuated the motor impairments induced
by pimozide in rats assessed using the same neurological battery uti-
lized in the current experiments.

Adenosine A2A receptors and D2 receptors are co-localized on the
same enkephalin-positive medium spiny neurons of the striatum
(Fink et al., 1992; Svenningsson et al., 1999; Ferré et al., 2001; Hillion
et al., 2002; Fuxe et al., 2003, 2007). This co-localization may allow
these receptors to interact either through the formation of hetero-
meric complexes, or through convergence onto the same cAMP-
related signal transduction pathways (Ferré et al., 1997; Svenningsson
et al., 1999; Ferré et al., 2001, 2008). The interaction between A2A

receptors and D2 receptors on striatal medium spiny neurons pro-
vides a plausible mechanism for explaining the drug interactions ob-
served in the present studies. The ventrolateral neostriatum is the
brain area most closely associated with the production of tremulous
jaw movements (Jicha and Salamone, 1991; Finn et al., 1997; Cousins
et al., 1998; Salamone et al., 1998, 2008a), and evidence indicates that
local injection of the adenosine A2A antagonist MSX-3 directly into the
ventrolateral neostriatum attenuated pimozide-induced tremulous
jaw movements (Salamone et al., 2008a). In addition, systemic co-
administration of the adenosine A2A antagonist istradefylline signifi-
cantly attenuated pimozide-induced tremulous jaw movements and
also reduced pimozide-induced increases in c-Fos expression in ven-
trolateral neostriatum (Betz et al., 2009). Furthermore, ventrolateral
neostriatal injections of adenosine antagonists also reduced the trem-
ulous jawmovements induced by cholinomimetic drugs (Simola et al.,
2004, 2006; Tronci et al., 2007). Nevertheless, in view of the literature
demonstrating that different striatal subregions subserve distinct
motor functions (e.g. Ishiwari et al., 2007), it is likely that striatal sub-
regions other than ventrolateral neostriatum are the primary locus at
which DAD2 and adenosine A2A receptors interact to regulate catalep-
sy and locomotion. Hauber et al. (2001) showed that local injections of
MSX-3 into medial neostriatum attenuated the catalepsy induced
by local injection of DA antagonists. More recently, Ishiwari et al.
(2007) demonstrated that the locomotor suppression induced by hal-
operidol could be reversed by injections of MSX-3 into the nucleus
accumbens core, but not into the accumbens shell or ventrolateral
neostriatum. Thus, it appears that DA D2 and adenosine A2A receptors
interact throughout the striatal complex, but the functional signifi-
cance of this interaction differs across these distinct subregions
(Ishiwari et al., 2007).

In the second group of experiments, Lu AA47070 was able to
reverse the behavioral effects of the DA D2 antagonist haloperidol
on performance of the concurrent FR5/chow intake choice task. Halo-
peridol (0.1 mg/kg) substantially altered the relative allocation of
choice behavior in rats performing on this task, significantly decreas-
ing lever pressing and increasing chow intake, which is consistent
with several previous studies (Salamone et al., 1991, 2002, 2009a,b;
Farrar et al., 2007). The concurrent FR5/chow feeding choice task
has been extensively studied, and considerable evidence indicates
that the shift from lever pressing to chow intake that is induced by
DA antagonism or accumbens DA depletions is not due to effects on
appetite or food preference, and is not related to the type of forepaw
motor control deficits that are seen after ventrolateral neostriatal DA
depletions (Salamone et al., 1991, 1993, 2002, 2007, 2009a,b; Cousins
et al., 1994; Koch et al., 2000; Nowend et al., 2001; Sink et al., 2008).
Thus, the effects of haloperidol on this task have typically been inter-
preted in terms of actions on processes such as behavioral activation
and effort-related choice behavior (e.g., Salamone et al., 2003, 2005a,
b, 2006, 2007, 2009a,b); low doses of DA antagonists or interference
with accumbens DA transmission appear to suppress lever pressing
but leave rats directed toward the acquisition and consumption of
food, and therefore rats treated with DA antagonists select a different
path to obtain food (i.e., consumption of the less preferred chow). In

image of Fig.�2
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recent studies, the adenosine A2A antagonists MSX-3 and istradefyl-
line also were shown to be capable of reversing the shifts in effort-
related choice behavior induced by DA antagonism in rats responding
on either the operant FR5/chow feeding task (Farrar et al., 2007,
2010; Salamone et al., 2009a,b; Worden et al., 2009; Nunes et al.,
2010) or the T-maze barrier climbing task (Mott et al., 2009; Pardo
et al., 2010). The ability of adenosine antagonists to reverse the effects
of DA antagonism appears to be related to the subtype of adenosine
receptor being blocked; although MSX-3, istradefylline, and Lu
AA47070 have all been shown to reverse the effects of DA antagonists
on effort-related choice behavior, the A1 antagonists DPCPX and CPT
were ineffective (Salamone et al., 2009a,b; Nunes et al., 2010). More-
over, the ability of adenosine A2A antagonists to reverse the effects of
D2 antagonists in rats responding on the concurrent lever pressing/
chow feeding task appears to be related to actions on the nucleus
accumbens (Farrar et al., 2010).

Across these different tests, Lu AA47070 appears to be about 2–3
times less potent than MSX-3, and about 10 times less potent than
istradefylline (Farrar et al., 2007; Salamone et al., 2008a, 2009a,b;
Worden et al., 2009). However, in terms of efficacy, Lu AA47070 is
comparable to these other compounds. In addition, it is evident that
higher doses of Lu AA47070 are needed to suppress tremulous jaw
movements compared to all the other measures, including the rever-
sal of the operant effects of haloperidol. This is consistent with previ-
ous reports using other adenosine A2A antagonists (Farrar et al., 2007;
Salamone et al., 2008a, 2009a,b), and could reflect the fact that trem-
or is one of the most difficult parkinsonian symptoms to treat, even
by L-DOPA. Nevertheless, the fact that tremulous jaw movements
are sensitive to adenosine A2A antagonists (Correa et al., 2004;
Salamone et al., 2008a; Collins et al., 2010b, 2011; present studies)
may suggest that drugs such as Lu AA47070 could be useful for
their tremorolytic effects in humans. Overall, the results of the cur-
rent experiments suggest that Lu AA47070 and other adenosine A2A

antagonists are capable of producing antiparkinsonian effects in ani-
mal models. This lends further support for their use as a novel non-
dopaminergic therapy for the treatment of idiopathic or drug-
induced parkinsonism. Furthermore, the present results may be rele-
vant for the development of treatments for depression. Previous stud-
ies have demonstrated that adenosine A2A antagonists are effective in
models of depression (El Yacoubi et al., 2003; Hodgson et al., 2009;
Hanff et al., 2010). The effects of adenosine A2A antagonists on
effort-related choice behavior could indicate that these drugs may
alleviate motivational symptoms such as psychomotor slowing, aner-
gia or fatigue that often are seen in patients with depression, parkin-
sonism and other disorders (Farrar et al., 2007; Salamone et al., 2006,
2007, 2009a,b, 2010).
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